Showing posts with label mammospheres. Show all posts
Showing posts with label mammospheres. Show all posts

Friday, August 7, 2009

Gene signatures in residual breast cancers after conventional therapy

Gene Signature of Breast Cancer Stem Cells Revealed, Genetic Engineering & Biotechnology News, August 4, 2009. First paragraph:
A consortium of researchers have identified the gene expression patterns of breast cancer stem cells that remain post treatment with either chemotherapy or antihormone treatments. They report that this gene signature differs from those linked to the bulk of epithelial cells in the tumor.
Based on: Gene signature for cancer stem cells may provide drug targets, Glenna Picton, News Release, Baylor College of Medicine, August 4, 2009.

See also: Gene signature for cancer stem cells may provide drug targets, Science Centric, August 4, 2009. First paragraph:
A subset of tumour cells that remain after a woman with breast cancer undergoes treatment with either anti-cancer or anti-hormone therapy shows a 'gene signature' that could be used to define targets for developing new drugs against the disease, said a consortium of researchers led by Baylor College of Medicine. The report appears in the current issue of the Proceedings of the National Academy of Sciences.
The report referred to in the above excerpt is an Open Access publication: Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features by Chad J Creighton and 22 co-authors, including Michael T Lewis, Jeffrey M Rosen and Jenny C Chang, Proc Natl Acad Sci USA 2009(Aug 3). [Epub ahead of print].[Abstract][Early version of OA full text].

Saturday, November 1, 2008

Distinct populations of tumor-initiating cells

Distinct populations of tumor-initiating cells derived from a tumor generated by rat mammary cancer stem cells by Ileana Zucchi and 13 co-authors, including Benjamin G Neel and Renato Dulbecco, Proc Natl Acad Sci USA 2008(Nov 4); 105(44): 16940–45, published ahead of print October 28, 2008. This is an Open Access Article [PDF]. PubMed Abstract:
Tumors derived from rat LA7 cancer stem cells (CSCs) contain a hierarchy of cells with different capacities to generate self-renewing spheres and tubules serially ex vivo and to evoke tumors in vivo. We isolated two morphologically distinct cell types with distinct tumorigenic potential from LA7-evoked tumors: cells with polygonal morphology that are characterized by expression of p21/(WAF1) and p63 and display hallmarks of CSCs and elongated epithelial cells, which generate tumors with far less heterogeneity than LA7 CSCs. Serial transplantation of elongated epithelial cells results in progressive loss of tumorigenic potential; tumor heterogeneity; CD44, E-cadherin, and epithelial cytokeratin expression and increased alpha-smooth muscle actin I and vimentin expression. In contrast, serial transplantation of LA7 CSCs can be performed indefinitely and results in tumors that maintain their heterogeneity, consistent with self-renewal and multilineage differentiation potential. Collectively, our data show that polygonal cells are CSCs, whereas epithelial elongated cells are lineage-committed progenitors with tumorigenic potential, and suggest that tumor progenitors, although lacking indefinite self-renewal potential, nevertheless may make a substantial contribution to tumor development. Because LA7 cells can switch between conditions that favor maintenance of pure CSCs vs. differentiation into other tumor cell types, this cell system provides the opportunity to study factors that influence CSC self-renewal and differentiation. One factor, p63, was identified as a key gene regulating the transition between CSCs and early progenitor cells.